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ABSTRACT 

A projection P on a Banach space X is called "almost locally minimal" 

if, for every a > 0 small enough, the ball B(P, c~) in the space L(X) of 

all operators  on Z contains no projection Q with IIQII -4 liP]I(1 - D a  2) 

where D is a constant.  A necessary and sufficient condition for P to be 

almost locally minimal is proved in the case of finite dimensional spaces. 

This  criterion is used to describe almost locally minimal projections on ~ .  

1. I n t r o d u c t i o n  

This work deals with projections on a finite dimensional Banach space X which 

have "almost" locally minimal norms (see the definition in Section 2). It  will 

make little sense to discuss these projections without mentioning the following 

fundamental  open problem which we hope to bet ter  understand by studying those 

"almost locally minimal" objects. 

PROBLEM 1.1: Does there exist a function r defined for A > 1 such that,  

for every n _> 1, 1 < k < n and every projection P on ~ with rank P = k and 

[]P[] = A, d(P(~'{), ~) <_ r 
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Here  d(Y, Z) is the Banach-Mazur  distance between the isomorphic spaces Y 

and Z.  

T h e  p rob lem has a posit ive answer in the special case of small  A's: 

THEOREM 1.2 ([Z-l] [Z-2]): There exists a function r defined for 1 <_ A < 

1.01 with lim~_~l r  = 1 such that, for every n >_ 1, 1 <_ k <_ n and every 

projection P on g~ with r a n k P  = k and IIPII = A < 1.01, d(P(g~),  e~) < r  

T h e o r e m  1.2 is proved by construct ing a project ion Q of norm 1 which is close 

to P .  Whenever  P and Q are project ions on a space X and lIP - QI[ = a < 1, 

the  ope ra to r  J = Q[P(X) is an i somorphism of P ( X )  onto Q(X)  with [[Je - eli = 

[[Qe - Pe H <_ [[Q - Pill[eli _< a[]el[ for all e �9 P ( X ) ;  hence d ( P ( X ) , Q ( X ) )  <_ 
(1 - a ) - 1 ( 1  q- a ) .  This  raises the  following question: Given a project ion P 

{P,k=0 on with []P[] = A > 1 on t~,  can we find a sequence of project ions N 

w i t h m a x { [ [ P i _ l - P i n  : 1 < i < N }  <_ a such that P0 = P ,  [[PN[[ = l a n d  

N a  <_ ~(A), where  ~(A) is independent  on n and k = r a n k ( P ) ?  The  existence of 

such a sequence will set t le P rob lem 1.1 because 

d ( P ( X ) , P N ( X ) )  <_ [ ( 1 -  a ) - x ( 1  + a)] N <_ e 4~(x) 

1 Let  us pause for the following if a <  5" 

Remark 1.3: I t  follows from Theo rem 1 of [D-Z] tha t  whenever  P is a project ion 

on g~' wi th  [[P[[ -- A, r a n k P  -- k and d(P(X),gkl) < # one can embed  g~' isomet-  

rically in g~,k and  ex tend  P to a p ro jec t ion /3  of g~,k onto P ( X )  in a na tu ra l  way 

so t h a t / 5  admi t s  a sequence g _-- {Pi}i=o of project ions with P0 /3, [[Plv[[ ---- 1 and 

max{[[Pi-1  - Pill: 1 < i < N}  = a where Y a  <_ 2A#. 

Unfo r tuna te ly  we are far f rom obtaining such a sequence wi thout  knowing in 

advance  t ha t  d(P(X),g~) is under  control. The  main  difficulty is the  lack of 

in format ion  abou t  the  s t ruc ture  of  the set lr(k), of project ions of a fixed rank  k, 

on a space X .  

We know tha t  7r(k) is a closed connected set which is not convex. I t  tu rns  out  

t h a t  r ( k )  is "almost"  locally convex in the  following sense: 

P R O P O S I T I O N  1 . 4 :  Let 0 < a <_ 1/8 and let P and Q be projections on a Banach 

space  X with I]Pll, ]IQII < A, l l P -  QH -- a and r a n k P  = k. Then there is a 

continuous function 0 : [0, 1] --+ r ( k )  such that 0(0) = P, 0(1) = Q and, for each 

0 < t < 1, [lO(t) - ((1 - t )P  + tQ)[[ < t(1 - t )Ca 2 where C = C(A) does not 

depend on k, X or the particular projections. 

Propos i t ion  1.4 is a consequence of the following l e m m a  which was proved in 

[z-2]: 
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LEMMA 1.5: Let X be a Banach space and let A0 > 1. There  exist a constant 

C = C(Ao) and a continuous function j3(T) defined for all operators T on X 

which satisfy the conditions IITI[ _< A0 and lIT 2 - T H = a <_ 1, such that /3(T)  is 

a projection and [[j3(T) - T][ <_ Ca. 

Proof of Proposition 1.4: For every 0 < t < 1 put  Tt = (1 - t )P  + tQ; then 

IITtll < Ao and IIT• - T t l l  = lit(1 - t ) (P  - Q)2I[ _< t(1 - t )a  2. By Lemma 1.5, for 

each 0 < t < 1 there is a project ion O(t) --/3(Tt) such tha t  

II(1 - t )P + tQ - o(t)ll = IlTt -/~(Tt)ll _ t(1 - t )Ca  2. 

Since/3 is continuous,  so is O(t). | 

In  the  sequel C = C(A0) will denote the constant  appearing in L e m m a  1.5. An  

explicit expression for C can be C = 4(2A0 + 1)e. 

2. Almost  minimal projections 

The cons t ruc t ion  of the desired sequence of projections N {P~}i=0 for which liP011 = 

JJPJJ = A > 1 and JJPNJ] = 1 must  be essentially a norm reduct ion process. In each 

step we like to find in a ball B(P~, a) of radius a around Pi another  project ion 

P~+I of smaller norm. W h a t  happens  if this cannot  be done at a reasonable pace? 

The  following discussion of this question deals with one type of a norm reduct ion 

pace which seems to be useful. 

Definition 2.1: Let A0 > 1, D = 10 + 4A0 and 0 < a < (8Ao)-1. A project ion P 

with IJPJl = A < A0 on X is called a l m o s t  a - m i n i m a l  if the ball B(P,  a) does 

not  contain a project ion Q with ]JQJJ < A(1 - Da2). The project ion P is said to 

be a l m o s t  l o c a l l y  m i n i m a l  if it is almost  a -minimal  for all 0 < a < (8A) -1.  

Remark 2.2: The  size of the constant  D appear ing in Definition 2.1 becomes 

significant only in the necessity par t  of Theorem 2.4 below. Any  positive constant  

D will do for Theorem 2.3 and the sufficiency par t  of Theorem 2.4. 

The  main  difficulty in the proofs of Theorems 2.3 and 2.4 below is the  fol- 

lowing: How do we construct  a project ion with good control over its norm and 

its posi t ion? L e m m a  1.5 provides us with a tool: If T is an opera tor  which 

is 5-close to its square T 2, then there is a project ion which is Ch-close to T, 

where C is a universal constant .  Next, we need operators  which are close to 

their squares. The  following surprising fact will be proved below: If  P is a pro- 

ject ion and U and V are any operators  with ]JUJJ, ][VJJ < 5, then the opera tor  
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T = P + (I - P ) V P  + P V ( I  - P) is C152-close to its square, where C,  is a uni- 

versal constant .  Wi th  these ideas in mind, let us proceed to precise s ta tements  

and their  proofs. 

THEOREM 2.3: Let a < 4AC -1,  where C = C(A0) is the constant of Lemma 1.5, 

and let P be a projection on a finite dimensional space X with [[PH = A < Ao. 

Assume that P is almost a-minimal. Then there is an operator S on X with 

nuclear norm [[SI]^ = 1 such that 

S P =  P S  and trPS>_ ( I + 8 A 2 ( A + I ) D l a ) - I A ( 1 - D 1  a2) 

where D1 -- D + A-2C. 

Proof: Pu t  

G(a) = {T  = P + (I - P ) U P  + P V ( I  - P):  U, V e L ( X )  

and liUll, IIVll <_ [4A(1 + k ) ] - l a } ;  

then,  clearly, G(a) is a convex set, symmetr ic  around P .  Suppose tha t  G(a) 

contains an element T = P + (I - P ) U P  + P V ( I  - P) where 

IIUIt, l lVl l < [4A(1 + A)]- : ta and IITII <_ A(1 - (D + A-2C)a2) .  

Since 

lIT 2 - Tll = l IP  + PV(I - P) + (I - P ) U P  + (I - P ) U P V ( I  - P) 

+ B Y ( I -  P ) U P -  P -  ( I -  P ) U P -  P V ( I -  P)I[ 

=]1(I - P ) U P V ( I  - P) + P V ( I  - P)UPI] 

<-[A(1 + A) 2 + A2(1 + A)l[lUllllv[I 

<_21(1 + A) 2.  [41(1 + l ) ] - 2 a  2 _< (8)~)--10/2, 

we get by Lemma  1.5 tha t  there  is a projection Q on X such tha t  [IQ - TI[ _< 
CoL2(8A) -1 . Hence 

IIQll <- IITII + IIQ - Tll _< ~(1 - (D + ~ -2C)a2)  + ~Ca2(8~2)  -1 
< A(1 - Da 2) 

and,  since a < 4AC -1,  

lIP - Q[] <_ liP - T[[ + lIT - Q[[ <_ l a  + Ca2(8A) -1 < Ol. 
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The  last two inequalities contradict  the assumption tha t  P is almost a-minimal .  

Pu t  D1 = D + A-2C. It follows tha t  the ball B(0, A(1 - D la2 ) )  and the convex 

set G(a) are disjoint and therefore there exists a functional W* on L(X)  which 

separates these two sets, i.e. W*(F) <_ A ( 1 -  Dla  2) < W*(T) for all F E 

A(1 - Dla2)B(O, 1) and T E G(a). Without  loss of generality we may assume 

tha t  []W*[[ = 1 and W*(T) > A(1 - D l a  2) for all T �9 G(a). Because of 

(2.1) A(1 -- D l a  2) < W*(P)  <_ IIW*illlPll < 

and because P + "/(I - P ) U P  + 5PV( I  - P) �9 G(a) for every choice of signs 

= +1 ,  = + 1  w h e n e v e r  IIUII, IIVII --- + 1 ) ] - l a ,  we get  tha t  

(2.2) IW*((I  - P)UP)I + IW*(PV(I  - P))I <- AD1 a2 

for all U, V �9 L (X)  with Ilgll, ][VI[ __ [4~(~ + 1)]-la.  As is well known, the 

functional  W* on L(X)  is represented by an operator  W on X via the identi ty 

W*(T) = t r ( W T ) ,  where the nuclear norm IIWIl^ = 1. It follows from (2.2) that ,  

for every opera tor  U �9 B(0, 1), we have tha t  

(2.3) 4)~2(/~ + 1 ) D l a  > I W * ( ( / -  P)gP)[  = I t r (W(I  - P)UP)I 

= [ tr(PW(I  - P)U)I  

and 

(2.4) 4A2(A + 1)Dla >_ [W*(PU(I - P))[ -- [ tr(WPU(I  - P))] 

= I t r((I  - P)WPU)[.  

Hence IIPW(I - P)[]^ < 4A2(A + 1)Dla and 

][(I - P)WPI]A < 4A2(A + 1 )Dla .  

Define $1 -- P W P  + (I - P ) W ( I  - P);  then S1P -- PS1 and 

I[S1 - -  W [ ]  A ~ -  [[PW(I - P) + (I - P)WPI[A <_ 8A2(A + 1)Dla, 

hence [[SIH^ <_ IIW[[A + 8A2(A + 1)Dla and the opera tor  S = HSI[[X1S1 will 

satisfy the desired conditions: I[S[I^ = 1, S P  = P S  and, by (2.1), 

t rSP  >_ (1 + 8A2(A + 1)Dla)-Xtr(S1P) 

= (1 + 8A2(A + 1 ) D l a ) - l t r ( W P )  

>__ (1 + 8A2(A + 1 )Dla )  - 1 .  A(1 - Dla2) .  | 

We will conclude the section with the following character izat ion of almost  

locally minimal  projections.  
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THEOREM 2.4: A projection P on a finite dimensional space X with [[P[[ = A is 

almost  locally minimal  i f  and only i f  there is an operator S on X satisfying the 

following three conditions: [[S[[^ = 1, t r S P  = A and S P  = P S .  

Proof." Suppose  t ha t  P is a lmost  locally minimal;  then  it satisfies the  a s sump-  

t ions of T h e o r e m  2.3 for every a > 0 small  enough. Hence, for each such a there  

is an ope ra to r  S~ on X such tha t  [[S~]]^ = 1, S a P  = P S ~  and 

t r ( S ~ P )  _> (1 + 8A2(A + 1)DlO0-1A(1 - D l a 2 ) .  

Since the  cons tant  D1 = D1 (A0) does not  depend on a ,  by passing to a convergent  

subsequence  as a tends  to  0, we obta in  a limit opera to r  S on X with IISII^ -- 1, 

S P  = P S  and t r P S  = A. Conversely, suppose t ha t  there is an ope ra to r  S 

sat isfying the  above three conditions and suppose tha t  P is not  a lmost  locally 

minimal .  Then  there  is an 0 < c~ < (SA) -1 and a project ion Q c B ( P ,  a)  with 

IIQll < A(1 - Oh2) .  We will show tha t  this yields a contradict ion.  This  is the  

place where  the  size of the constant  D of Definition 2.1 plays a role. 

Le t  T = P Q  + I - Q; then  T maps  the subspace  ( I  - Q ) ( X )  identically onto 

itself and  the  subspace  Q ( X )  into P ( X ) .  Moreover,  ]]I - T H = []Q - PQ]] = 

[I(Q - P)Qll  <- As, hence T is invertible and,  if V = T -1 ,  then  IlYll < (1 - Aa) -1 

and we claim tha t  the opera to r  R -- P + ( I  - P ) V P  is a project ion of X onto 

Q ( X )  along ( I  - P ) ( X ) .  Indeed,  R 2 = R,  I - R = (I  - P ) ( I  - Y P )  and,  by the  

definit ion of T,  for every y E Q ( X ) ,  T y  = Py .  Therefore  

R y  = P y  + ( I  - P ) T - 1 P y  = P y  + ( I  - P ) T - ' T y  -- y. 

Moreover,  if Ilxll ~ 1 then  y = T - 1 p x  e Q ( X )  and Ilyll ~ (1 - ~ ) - ' ~ l l x l l  
( l  - -  ~O~)--IA and so  

(2.5) IIRx - Pxll = [ l ( / -  P ) T - 1 P x [ [  = [l( I - P)Qyll  

= [l(Q - P)Qyll -~ aAllyll <_ aA2( 1 - Aa) -1 -< 2A2a. 

Replacing P and Q by I - Q and I - P ,  respectively, in the  above a rgumen t  and 

pu t t i ng  W = (I  - Q ) ( I  - P )  + P we get t ha t  W t p ( x  ) is the  ident i ty  on P ( X )  

and 

II I - W l l  = IIQ( I - P ) l l  = } I Q ( Q  - P ) l l  <- "~a. 

Hence W is invertible and  it maps  ( I  - P ) ( X )  isomorphical ly  onto ( I  - Q ) ( X ) .  

P u t  U - W - l ;  then  HU H < ( 1 - A a )  -1 and consider /~ = I - Q + Q U ( I - Q ) .  T h e n  
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/~ is a project ion with kernel Q ( X )  and, if y E ( I  - P ) ( X ) ,  then W y  = ( I  - Q)y ,  

therefore 

f ry  --- ( I  - Q)y  + Q W - I ( I  - Q)y  = y. 

It follows tha t  /~ is a project ion of X onto ( I  - P ) ( X )  with ker/~ = Q ( X )  and 

hence /~  = I - R. Moreover, for every x C Ball(X) let y = W - 1 ( 1  - Q)x;  then 

y e ( I  - P ) ( X )  and 

(2.6) I[(R - Q ) ( x ) l l  = I 1 ( I  - R ) ( x )  - ( I  - Q)(x)ll 
= I [ Q U ( I  - Q)xll = IIQ(I - P)yl[ 

-< m~llyll -< Aa(1 + A)(1 - A a ) - l i l x l l  _< 4aA(1 + :X)ll~ll. 

Consequent ly  we get tha t  

P + ( I -  P ) Y P  = R = I -  R = Q -  Q U ( I -  Q) 

and hence 

(2.7) Q = P +  ( I -  P ) V P + Q U ( I -  Q). 

Note tha t  

(2.8) 
(Q - P ) U ( P  - Q) = Q U ( I  - Q) ~ Q U ( I  - P )  - P U ( I  - Q) + P V ( I  - P )  

= Q U ( I  - Q) - Q U ( I  - P)  + P U ( I  - P)  

because U = W -1 maps  ( I  - Q ) ( X )  onto ( I  - p ) ( x ) .  Also, 

(2.9) 
Q U ( I  - P )  -- Q 2 U ( I  - P)  = (Q - P ) Q U ( I  - P )  + P Q U ( I  - P )  

= ( Q -  P ) Q U ( I -  Q) + ( Q -  P ) Q U ( Q -  P)  + P Q U ( I -  P ) .  

Combining identities (2.7), (2.8) and (2.9) we get tha t  

(2.10) 

Q = P +  ( I -  P ) V P +  ( Q -  P ) U ( P -  Q) - P U ( I -  P)  

+ (Q - P ) Q U ( I  - Q) + (Q - P ) Q U ( Q  - P )  + P Q U ( I  - P ) .  

Since S P  = P S ,  we have tha t  

t r ( S ( I  - P ) V P )  = t r ( S P U ( I  - P ) )  = t r ( S P Q U ( I  - P ) )  = O. 
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[I(Q - P ) U ( P  - Q)[[ < ~2HuI[ - (1 - ,~o0-1o~ 2 ~ 2o~ 2, 

[I(Q - P ) Q U ( I  - Q)[[ <- liQ - PHHQU( I - Q)N <- 4a2A( 1 + A) 

by (2.6) and, finally, 

[[(Q - P ) Q U ( Q  - P)[[ _< Aa2(1 - Aa) -1 < 2Aa 2. 

It follows from (2.10) that 

A(1 - D a  2) > IlSlt^. IlOll -> t r S Q  

>_ t r S P  - IISII^[Ii(Q - P ) U ( P  - Q)I[ + II(Q - P ) Q U ( I  - Q)II 

+ II(Q - P ) Q U ( Q  - P)ll] 

> A - a2(2 + 4A(1 + A) + 2A) 

> A[1 - (8 + 4A)a2], 

a contradiction, in view of Definition 2.1. 1 

3. A l m o s t  local ly  m i n i m a l  p r o j e c t i o n s  o n  e~ 

We start with a natural example of an almost locally minimal projection on 

X = ~ .  

E x a m p l e  3.1" Let P be the orthogonal projection of X onto the 3-dimensional 

subspace E, spanned by the vectors xl = (1, 1, 1, 1), x2 = (1 , -1 ,  1 , -1)  and 

x3 = (1, -1 ,  -1 ,  1). We claim that P is almost locally minimal. With respect to 

the unit vector basis 4 {u~}i=l  of X, P is represented by the matrix 

p = 4 - 1  
3 --1 1 ~ 1 ]  

--1 3 1 
1 1 3 " 

1 1 - 1  

Clearly, IIPII = 3/2. Consider the following vectors in ~4 = X*: 91 = (1, -1 ,  1, 1), 

g2 = (--1, 1, 1, 1), g3 = (1, 1, 1,--1) and g4 = (1, 1 , -1 ,  1). Then IlgiH = 1 for all 
4 

1 < i < 4 and hence the operator S = 4 -1 ~ gi |  has nuclear norm IISII^ _< 1. 
i=1 

Let us compute the trace of P S ,  

t r (PS) = 4 -1 g i ( P u i )  = 3/2 = HPJJ. 
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It  follows tha t  [[S[IA = 1. We claim tha t  P S  = S P .  Indeed 

S = 4 -1 - 1  1 1 1 = p _ 1 I 
1 1 - 1  2 
1 - 1  1 

and hence P S  = P ( P  - �89 = (P  - � 89  = S P .  I t  follows f rom Theo rem 2.4. 

t ha t  P is a lmost  locally minimal .  

Note  t ha t  in each row and each column of P the  sum of the absolute  values of 

the  entries is 3/2 = IIPII. Is this typical  of a lmost  locally minimal  project ions on 

g~? The  answer is negative,  as is shown in the next  example.  

E x a m p l e  3.2: Let X = ~5 and let 

- 1  3 1 1 
/5 = 4 -1 1 1 3 - 1  . 

1 1 - 1  3 
0 0 0 0 

3 and, Then 15 is a projection of X onto a 4-dimensional subspace of X, 11/511 -- 

if gi (gi, 0) C 6~  and 5 = {ui}i=l  is the unit  vector  basis of X ,  then  the opera to r  
4-- 1 4 = ~-:~i=1 g~ | ui has unclear norm {ISI{^ = 1, t r / sS  = 3/2  and 

~/5 =/5~. 

Definit ion 3.3: A p r o j e c t i o n / 5  

is represented by a kernel p(x ,  y) 

following equalities: 

Hence /5 is a lmost  locally minimal  by Theorem 2.4. Here the space 65 splits 

into an 61-direct sum of 64 and a (one dimensional)  subspace [u5], and the  range 

o f / 5  is isometr ic  to the space r a n g e P  @ [u5]. Moreover,  the 6~  norm IIPI]~r = 

IIP]I 1 = 3/2.  I t  tu rns  out  tha t  a similar p roper ty  is shared by every a lmost  locally 

min imal  project ion on 6~. Before we s ta te  the main  result of this section let us 

discuss the  following special project ions on L1 [0, 1]: 

on LI[0, 1] is called A - d o u b l y  s t o c h a s t i c  if it 

(i.e. ( / s f ) ( x )  = f~  p(x,  y ) f ( y ) d y )  satisfying the  

and 

1 

Ip(x ,y) ldy  = A a.e 

0 

1 

Ip(x ,y ) ldx  = A a.e.  

0 
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A projection P on f~ is said to be equiva len t  to  a A-doubly s tochas t i c  

p r o j e c t i o n / 5  on L1 [0, 1] if there is an isometric embedding J: g~ -+ LI[0, 1] and 

n pairwise disjoint measurable sets A1, . . .  ,An with #(Ai) > 0 (# = Lebesgue's 

measure) such that, for each unit vector basis element ui, 1 < i < n, of ~ ,  

Jui = #(Ai)-IXA~ and /5 = j p j - 1 R ,  where R denotes the natural projection 

of LI[0, 1] onto J(g~) defined by 

R f  = ~-'~tt(Ai) -1 f(y)dy X~Ai" 
i=1  Ai 

Clearly, P(g~) is isometric to/5(L1). 

LEMMA 3.4: Let Q be a projection on ~ and assume that Q is represented by 
m U m the matrix (qi,j)id=l with respect to the unit vector basis { i}i=1- Assume that 

m m Y~i=l [q~,jl = A for 1 <_ j <_ m and that there exist positive number {Ai}i= 1 with 
m Y~=I Ai = 1 such that 

m 

(3.1) A - I ~  i Iqi,jIAj=A f o r a l t l < i < m .  
j = l  

Then Q is equivalent to a A-doubly stochastic projection O on LI[O, 1]. 

Ai A j , E j = I  
i A Proof: Let denote the interval _ (}--~)-__11 j )  of [0,1] and embed g r  

= Ai XA~ where XA~ into L1 [0, 1] by the map J : e~ --+ L1 [0,1], defined by Ju~ -1 
is the indicator function of Ai. Clearly, J is an isometric embedding and there 

is a natural projection R of norm 1 of LI[0, 1] onto J(e7 ~) defined by 

Put  Q = JQJ-1R; then ~) is a projection of LI[0, 1] onto JQ(g~) and IIQII1 = 

]]QH1 = A. Note that  

1 

Q , f ( x ) = / q ( x , y ) f ( y ) d y  

0 

where q(x,y) = qi,iXAj(Y) (Jui)(x). 
i=1  

To show that  Q is A-doubly stochastic, let us compute the relevant integrals: If 
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x E Ak then, because the Ai are pairwise disjoint, 

1 1 

/ 'q(x,y)'dY : #(Ak)-l / j=~lqk,jXAj(y) dy 
0 0 

1 
m 

= # ( A k ) - ' / E  ]qk,jlXAj(y)dy 
J 
0 j = l  

= Ak -1 ~ I qk,j ]Aj = A, 
j = l  

by (3.1). Also, if y E Ak then 

1 m m 

f Eqi,kd(ui)(x) dx = Elqi,kl = A. 
0 i = 1  i = 1  

This proves that  (~ is A-doubly stochastic. | 

One important property of a A-doubly stochastic projection /5 on L1 is the 

following fact: 

(3.2) Regarding/5 as a projection on L~[0, 1], 11/5tloo = A. 

Proof: Let Ilfll~ = 1; then, for every 0 < x < 1, 

1 1 

I(Pf)(x)l = /p(x,y) f(y)dy)  < /Ip(x,y)ldy = A. 
0 0 

The equality I]/511~ = A holds because, for almost every x, if f(y) = sign(p(x, y)) 

then 1( /h f ) (x) l  = A. | 

Remark 3.5: We are interested in the isomorphic nature of the range E of a 
projection P on e~. We have just seen that if (3.1) holds then E is isometric to 

the range of a A-doubly stochastic projection t5 on L1. 

In general it may not true that  the range E of a projection Q satisfying the 

assumptions of Lemma 3.4 is isometric to the range of a projection P on some ~n 

which is represented (with respect to the unit vector basis {vi}iml) by a A-doubly 
n n stochastic matrix (qi,j) satisfying ~i=1 Iqi,il = ~i=1 Iqj#l = A for all 1 ~ j < n. 

However, if Ai are all rational numbers then the last statement holds. Indeed, let 

Ai = ki/m and let T: t?~ -+ g~ be the isometry defined by 

t i  

T(u,) k; 1 Z vJ ~_ W i ,  

j = t ~ - l + l  
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i 
where to = 0 and, for i _> 1, ti = ~ j = l  kj. Let V denote the na tura l  project ion 

of ~ onto [wi]in__l defined by V(vk) = wi if t i -1  < k < ti. Then  IIV[I = 1 and 

P = T Q T - 1 V  is the  desired project ion o f g ~  onto T(E).  Indeed, ifth-1 < k <_ th 

then  

Pvk = TQT- lWh = TQuh 

j = l  j = l  i = t j - l + l  

if P = (Pi,J)i,'~=l then P~,k = qj,hk; 1 = m- lq j ,hAj  1 if th-1 < k <_ th Therefore,  

and  t j_ 1 < i < tj. I t  follows tha t  

~ [ p i , k l  = m - 1 .  ;-~lqj,h]kjA:l : A 
i=1 j----1 

for every 1 < k < re and 

[Pi,k[ = m -1 E [qJ,h[khAJ 1 = A; 1 E [qj,U[Ah ---- A, 
k = l  h = l  h = l  

by (3.1). 

We are now ready  to prove the following representat ion theorem for a lmost  

locally min imal  project ions on g~. 

THEOREM 3.6: Let P be an almost locally minimal projection on X = g~ with 

[IP[I = A > 1. Then there is an integer 2 < m <_ n, there are positive numbers 

~[A~}i=lm with ~ Ai = 1 and a permutation {ui}i=l '~ of the unit vector basis of s 
i=1 

with respec t  to which 

where Q2 = Q, pg  = Po, Q is an re x m matrix satisfying (3.1) and, therefore, 

equivalent to a A-doubly stochastic projection, Po is an ( n - r e )  x ( n -  re) mat r ix ,  

IIQII = A, IIPoll <_ A and 

d(Q([ui]~=l) ~ l  Po([ui]~=m+l), P(g~)) <- A2. 

Proof: By T h e o r e m  2.4, there is an opera to r  S on X such tha t  ItSII^ = 1, 

t r S P  = IIPII = A and S P  = PS.  Because X = g~ there  is a p e r m u t a t i o n  

{u~}i=l of the  uni t  vector  basis of X with respect  to which S = ~ i = l  Aigi | ui 
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where 1 _< m _< n, hi > O, Ei=lm hi = 1, gi = E j= ln  gi,juj* E g~  and Ilgill = 
maxj Igi,jl = 1 for all 1 < i < m. ({u~}j~__l denotes the unit vector basis of ~ . )  

T t  n . Let P = (Pi,j)~,j=l be the matr ix  of P with respect to {ui}i=l, then 

(3.2) P s  = E h~g~ | p ~  = E h~g~ | ~ p , , ~ j  = ~ p j , ~  | ~j. 
i=1 i=1 j = l  j = l  i=1 

It follows tha t  

(3.3) 

h = t r ( P S )  = hiPj,igi, j  = hi Pj,igi,j ~ hi }Pj,i ~_ h 
j=l i=1 i=1 \ j=l  / i=1 j=l 

n because h = IIP[] = m a x / ~ j = l  IPj,i] and Hgill = maxj  Igi,jl = 1. 
Hence, for every 1 < i < m, if pj,i ~ 0 then 

(3.4) gi,j = sign(pj, i)  a n d  ~ IPj,i] =- h. 
j = l  

On the other  hand, 

m 

(3.5) P S  = S P  = E hjP*gj | uj. 
j = l  

Compar ing  (3.2) and (3.5) we get that ,  for 1 < j _< m, 

(3.6) ~ hiPj,igi = hjP*gj. 
i=1 

Applying bo th  sides of (3.6) to uj we obtain by (3.4) tha t  

(3.7) ~ .k~,pj,i, = ~ .kipj#gi,j = ~ hipj#gi(uj) 
i=1 i=1 i=1 

= hjP*gj(uj) = hjgj(Puj)  = .~jgj pk,juk 
\ k = l  / 

= "~i EPk,JgJ,k = hj IPk,jl. 
k----1 k=l  

Summing  bo th  sides of (3.7) over 1 < j _< ra we get, by (3.4), tha t  

(3.s) hi Ipj,d = ~ x j  Ipk,jl F hjh = h. 
i=1 j=l  j=l  k=l  j = l  
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m The equality (3.8) forces ~ j = l  [Pj#t = A for all 1 < i < m, hence 

(3.9) p j , i = O  foral l  l < i < m  and m < j ~ _ n .  

The relation p2 = p and the last equality imply that,  for m < h, k _< n, 
n 

Ph,k = E P h , j P j , k  -~ P h , j P j , k ,  
j = l  j=mq-1 

hence the ( n - m )  • ( n - m )  matrix P0 -- (Ph,k)~,k=m+l is a projection with IIP0[I < 

IIPll = A. Similarly, if we put qi,j = Pi,j for 1 < i , j  <_ m then Q -- (qi,j)i,~k=l 

is easily checked to be a projection satisfying the equality ~ -~1  [qi,jl = A. Also, 
n by (3.6), ~ j = l  AJ{q~,Jl -- )~igj(Puj) = A~ .  It  follows from a e m m a  3.4 that  Q 

is equivalent to a A-doubly stochastic projection on LI[0, 1]. Let us now discuss 

the isomorphic type of Q([ui]i~l) @~1 Po([Ui]~--m+l). 

Let /5 denote the projection Q G P0 on t~ (i.e. /hui = Qui if 1 < i < rn and 

/hui = Poui if m < i < n). Since P - t5 is an upper right m • (n - m) matrix,  

we have that  (P  - / 5 ) 2  _ 0. The following lemma is needed for the completion 

of the proof of Theorem 3.6. 

LEMMA 3.7: Let  P and JP be projections on a Banach space X and assume that  

IIPII, 11/511 < A and (P  - / 5 ) 2  = O. Then d ( P ( X ) , / 5 ( X ) )  < A 2. 

Proof: Since P 4-/5 -- P/5 4-/HP, multiplying both sides by P on the left we get 

that  P 4- P P  -- P/5  4- P/HP, hence P = P/HP. It follows that  if x -- P x  then 

x -~ P /hx  and, therefore, 

Ilxll _< IlPllll/hxll _ All/hxll _< A2llxll. 

By symmetry  we get that  for every y = /hy, []y[[ _~ A][Py]I <_ A2]]y[[. It  follows 

tha t  d ( P ( X ) , / 5 ( X ) )  < A 2. | 

It  remains to discuss the magnitude of rn. Suppose that  m = 1; then, w.l.o.g., 

S = ),lgl | ul and so AlP*g1 | ul = S P  = P S  = )~1gl | P u l .  It follows tha t  

ul  = P u l ,  contradicting the fact that  [[Pul[I = A > 1. This completes the proof 

of Theorem 3.6. | 

4. Concluding remarks 

How far are we from a positive solution of Problem 1.1 raised in the Introduction 

and what  is needed for a complete solution? 

I t  seems that  we still have a long way ahead; however, Theorem 3.6 suggests 

that,  under certain circumstances, an inductive argument might work well. We 

need positive answers to the following 
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PROBLEM 4.1: Let P be a A-doubly stochastic projection on Lx[0, 1] with 

rank(P)  = k. Is d(P(L1),gkl) <_ r where r is independent on k? 

PROBLEM 4.2: Do there exist constants 0 < /3 =/3(A) < 1 and 0 < a = a(A) 

such that  i f /5  is a projection on g~ with 11/5tl < A which is almost a-minimal 

then there is an almost locally minimal projection P on g~ with liP -/511 ~ / 3  

and 11/511 _< IIPIl? 

Note that  Theorem 1.2 settles Problem 4.2 in the special case of projections of 

small norm, since any projection of norm 1 is locally minimal. 

Suppose that  Problems 4.1 and 4.2 have positive solutions. Starting with a 

projection Q of norm A, either we can find a sequence N {Qi}~=l with Q0 = Q and 

IIQNl[ = 1 such that  IIQi - @+11[ _ a and [IQi+l[I _< A(1 - D a 2 )  i+1 for every 

0 < i  < N - l ,  or there i s a Q i  = P s u c h t h a t  P i s a l m o s t  a-minimal. In the 

first case, Problem 1.1 is solved because the discussion in the Introduction shows 

that  d( Q( g? ), gkl ) <_ (1 - a ) -N(1  + a) N. Since A(1 -- Da2) N ------- 1 we get that  

d(Q(g?),g~) TM [(1 + a ) / (1  - a)] [l~ l~ ~-~ 

In the second case, if Problem 4.2 has a positive solution, there is an almost 

locally minimal projection P on g~ with liP - QII -</3. If Problem 4.1 has a 

positive solution, then Theorem 3.6 ensures that  Pg~ splits into a precise gl- 

direct sum of a kl dimensional subspace F of g~ with d(F,g kl) _< r and a 

range E of a projection Q0 of rank < k with IIQ011 -< A. With some luck an 

induction procedure may then settle Problem 1.1 but, of course, additional work 

is required. 

The case oforthogonal projections: Suppose that  P is an almost locally minimal 

orthogonal projection on g~, i.e., the representing m a t r i x  (Pi,j)in, j=l is symmetric. 

In this case Theorem 3.6 states that  the space g~ splits into a precise gl-direct 

sum g~ G g~-m and P = Q @ P0, where Q and P0 are orthogonal projections 

on g~ and g~-m resp. with IIQII, IIP0]l -< [IPl[ and where Q is an almost locally 

minimal projection on g~ which is equivalent to a A-doubly stochastic projection. 

It will be interesting to settle the following: 

PROBLEM 4.3: What  is the isomorphic type of the range P(e~) of an orthogonal 
A-doubly stochastic projection on g~? 
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