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ABSTRACT
A projection P on a Banach space X is called “almost locally minimal”
if, for every a > 0 small enough, the ball B{(P,a) in the space L{X) of
all operators on X contains no projection @ with Q| < ||P|(1 — Da?)
where D is a constant. A necessary and sufficient condition for P to be
almost locally minimal is proved in the case of finite dimensional spaces.
This criterion is used to describe almost locally minimal projections on £7.

1. Introduction

This work deals with projections on a finite dimensional Banach space X which
have “almost” locally minimal norms (see the definition in Section 2). It will
make little sense to discuss these projections without mentioning the following
fundamental open problem which we hope to better understand by studying those
“almost locally minimal” objects.

PROBLEM 1.1: Does there exist a function 9(\) defined for A > 1 such that,
for every n > 1, 1 < k < n and every projection P on ¢} with rank P = k and
[Pl =X, d(P(e7), €F) < %(A)?
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Here d(Y, Z) is the Banach-Mazur distance between the isomorphic spaces Y’
and Z.
The problem has a positive answer in the special case of small A's:

THEOREM 1.2 ([Z-1] [Z-2]): There exists a function () defined for 1 < X <
1.01 with limy_,; ¥(\) = 1 such that, for every n > 1, 1 < k < n and every
projection P on £} with rankP = k and || P|| = A < 1.01, d(P(£}), £5) < (N).

Theorem 1.2 is proved by constructing a projection @ of norm 1 which is close
to P. Whenever P and Q are projections on a space X and ||[P - Q| =a <1,
the operator J = Q|p(x) is an isomorphism of P(X) onto Q(X) with ||Je—ef| =
|Qe — Pell < {|Q — Plillell < clle|| for all e € P(X); hence d(P(X),Q(X)) <
(1 — @)~}(1 + @). This raises the following question: Given a projection P
with ||P]] = A > 1 on £2, can we find a sequence of projections {P;}}¥, on £
with max{||P;_; — B]| : 1 < ¢ < N} < a such that P, = P, ||Py|| = 1 and
Na < p()), where ¢()) is independent on n and k = rank(P)? The existence of
such a sequence will settle Problem 1.1 because

d(P(X), Py(X)) < [(1 - o) (L + )}V < et
if & < 3. Let us pause for the following

Remark 1.3: It follows from Theorem 1 of [D-Z] that whenever P is a projection
on £} with ||P|| = X, rankP = k and d(P(X),#¥) < p one can embed £7 isomet-
rically in 7% and extend P to a projection P of £2* onto P(X) in a natural way
so that P admits a sequence {P;}Y, of projections with Py = P, ||Pn]l=1and
max{||P;—1 — P;|: 1 <i < N} = a where Na < 2)p.

Unfortunately we are far from obtaining such a sequence without knowing in
advance that d(P(X), %) is under control. The main difficulty is the lack of
information about the structure of the set 7{k), of projections of a fixed rank k,
on a space X.

We know that 7(k) is a closed connected set which is not convex. It turns out
that w(k) is “almost” locally convex in the following sense:

PROPOSITION 1.4: Let 0 < a < 1/8 and let P and Q be projections on a Banach
space X with |P|,, |Q|l < A, ||P — Q|l = o and rankP = k. Then there is a
continuous function 8 : [0,1] — n(k) such that 6(0) = P, 6(1) = Q and, for each
0<t<1,|6@)—((1-t)P+1tQ)| < t(l —t)Ca?® where C = C()) does not
depend on k, X or the particular projections.

Proposition 1.4 is a consequence of the following lemma which was proved in
1Z-2):
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LEMMA 1.5: Let X be a Banach space and let A\g > 1. There exist a constant
C = C(Xo) and a continuous function 3(T) defined for all operators T on X
which satisfy the conditions ||T|| < Ao and ||T? - T|| = o < §, such that B(T) is
a projection and ||3(T) - T|| < Ca.

Proof of Proposition 1.4: For every 0 <t < 1 put T; = (1 — t)P + tQ; then
T3l < Ao and ||T2 — Te|| = [|t(1 — £)(P — Q)?|| < t(1 — t)a?. By Lemma 1.5, for
each 0 < t < 1 there is a projection 6(t) = 3(T;) such that

I(1 = 8)P +1Q — ()l = | T: — B(T)Il < t(1 - t)Ce?.

Since 3 is continuous, so is 6(t). ]

In the sequel C = C(\) will denote the constant appearing in Lemma 1.5. An
explicit expression for C can be C = 4(2Ao + 1)e.

2. Almost minimal projections

The construction of the desired sequence of projections { P,} ¥, for which || Py|| =
IP]l = A > 1 and || Pn|| = 1 must be essentially a norm reduction process. In each
step we like to find in a ball B(P;, a) of radius a around P; another projection
P, of smaller norm. What happens if this cannot be done at a reasonable pace?
The following discussion of this question deals with one type of a norm reduction
pace which seems to be useful.

Definition 2.1: Let Ag > 1, D = 10+4)g and 0 < @ < (8)¢)"!. A projection P
with ||P]| = A < Ao on X is called almost a-minimal if the ball B(P,a) does
not contain a projection @ with ||Q|| < A(1 — Da?). The projection P is said to
be almost locally minimal if it is almost a-minimal for all 0 < a < (8)71.

Remark 2.2: The size of the constant D appearing in Definition 2.1 becomes
significant only in the necessity part of Theorem 2.4 below. Any positive constant
D will do for Theorem 2.3 and the sufficiency part of Theorem 2.4.

The main difficulty in the proofs of Theorems 2.3 and 2.4 below is the fol-
lowing: How do we construct a projection with good control over its norm and
its position? Lemma 1.5 provides us with a tool: If T is an operator which
is é-close to its square T2, then there is a projection which is Cé-close to T,
where C is a universal constant. Next, we need operators which are close to
their squares. The following surprising fact will be proved below: If P is a pro-
jection and U and V are any operators with [|U||,||V]|| < §, then the operator
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T =P+ (I —P)VP+ PV(I - P) is C16°-close to its square, where C; is a uni-
versal constant. With these ideas in mind, let us proceed to precise statements
and their proofs.

THEOREM 2.3: Let o < 4A\C~!, where C = C()\o) is the constant of Lemma 1.5,
and let P be a projection on a finite dimensional space X with ||P]j = A < A¢.
Assume that P is almost a-minimal. Then there is an operator S on X with
nuclear norm ||S||x = 1 such that

SP=PS and trPS> (1+8)\(A+1)Dia)*A(1 — D1a?)
where D; = D + A72C.
Proof: Put

G(a)={T =P+ (I -PUP+PV(I-P):U,V € L(X)
and U], [V]| < [4A(1 + X)) ta);

then, clearly, G(a) is a convex set, symmetric around P. Suppose that G(a)
contains an element T'= P + (I — P)UP + PV (I — P) where

U1 IV < AL+ 2] e and |IT]] < AL = (D +A72C)e?).

Since
7% - 71| =|P+PV(I-P)+(I~-P)UP+({~PUPV(-P)
+ PV(I—-PUP—P—(I-PUP—-PV(I—P)|

—|(I — P\UPV({I — P) + PV(I — P)UP)||

<A@ +2)2 + X2+ MUV

<A1+ X2 401 + M) 2? < (80 1P,
we get by Lemma 1.5 that there is a projection @ on X such that [|@ — T'|| <
Ca?(8))~!. Hence

IQI < Il +11Q — Tl < A(L = (D +A72C)a?) + ACa®(8X%) !
< A1 - Dao?)

and, since a < 4AC71,

1 -
IP=QU<IP-TI+IT-Ql < za+ Co?(8)7! < e
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The last two inequalities contradict the assumption that P is almost a-minimal.
Put D; = D + A~2C. It follows that the ball B(0, \(1 — D1c?)) and the convex
set G(a) are disjoint and therefore there exists a functional W* on L(X') which
separates these two sets, i.e. W*(F) < M1 — Dy1o?) < W*(T) for all F €
M1 — D1a?)B(0,1) and T € G(a). Without loss of generality we may assume
that |[W*|| =1 and W*(T) > A(1 — D1a?) for all T € G(a). Because of

(2.1) A(L = Dya?) <W*(P) < [W*[[|P]l < A

and because P + y(I — P)YUP + §PV(I — P) € G(a) for every choice of signs
v = =1, § = 1 whenever |[U], |V € [4X(A + 1)] 1o, we get that

(2.2) |W*((I — P)UP)| + |W*(PV(I — P))| < AD,o?

for all U,V € L(X) with ||U|,[|[V]] < [4X(A + 1)]"'a. As is well known, the
functional W* on L(X) is represented by an operator W on X via the identity
W*(T) = tr(WT), where the nuclear norm ||W||5 = 1. It follows from (2.2) that,
for every operator U € B(0,1), we have that

(2.3) 42%2(A +1)D1a > [W*((I — P)UP)| = |tr(W(I — P)UP)|
= |tr(PW(I — P)U)|

and

(2.4) 402\ 4+ 1)Dya > |W*(PU(I - P))| = tr(WPU(I — P))|

= |te((I = P)W PU)|.
Hence ||[PW(I — P)||s < 4X*(A + 1)D1a and
(I = PYWP||n < 4X*(X\ + 1)D1cv.
Define S; = PWP + (I — PYW(I — P); then S; P = PS; and
IS1 = Wil = |PW(I — P) + (I = PYWP||n < 8)\*(A + 1) D1a,
hence ||S1][a < [|W]la + 8X2(A + 1)D1c and the operator S = ||Sy]|x*S; will
satisfy the desired conditions: ||S|[x = 1, SP = PS and, by (2.1),
trSP > (14 8)\%(\ +1)Dya) 'tr(S; P)
= (1+8X2(A+1)D1a) " Hr(WP)
> (1 4+8A+1)Da) - A1 -D1a?). 1

We will conclude the section with the following characterization of almost
locally minimal projections.
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THEOREM 2.4: A projection P on a finite dimensional space X with ||P|| = X is
almost locally minimal if and only if there is an operator S on X satisfying the
following three conditions: ||S||» = 1, ttSP = A and SP = PS.

Proof: Suppose that P is almost locally minimal; then it satisfies the assump-
tions of Theorem 2.3 for every a > 0 small enough. Hence, for each such « there
is an operator S, on X such that ||Sy|n =1, SoP = PS, and

tr(SoP) > (1 +8)2(\ 4+ 1)D1) 1Al — D10?).

Since the constant D; = Dj(Ag) does not depend on ¢, by passing to a convergent
subsequence as o tends to 0, we obtain a limit operator S on X with ||S|| = 1,
SP = PS and trPS = A. Conversely, suppose that there is an operator S
satisfying the above three conditions and suppose that P is not almost locally
minima). Then there is an 0 < o < (8A\)~! and a projection @ € B(P, ) with
QI < M1 — Da?). We will show that this yields a contradiction. This is the
place where the size of the constant D of Definition 2.1 plays a role.

Let T = PQ + I — Q; then T maps the subspace (I — Q)(X) identically onto
itself and the subspace Q(X) into P(X). Moreover, || — T|| = ||Q — PQ|| =
(@ — P)Q|| < Aa, hence T is invertible and, if V = T, then ||V|| < (1 —Aa)™*
and we claim that the operator R = P + (I — P)V P is a projection of X onto
Q(X) along (I — P)(X). Indeed, R> = R, I — R = (I — P)(I — VP) and, by the
definition of T', for every y € Q(X), Ty = Py. Therefore

Ry=Py+(I—-PYI 'Py=Py+(I-P)T 'Ty=y.

Moreover, if |z]] < 1 then y = T™'Pz € Q(X) and |ly[| < (1 — Ada) ' A|z|| <
(1 — Aa)~1X and so

(25) IRz — Pzl| = || - PYT™' Pl = |(I - P)Qyl
= [l(@ — P)Qyll < allyll < ad?*(1 - Aa) ™! < 2)%a.

Replacing P and Q by I — @ and I — P, respectively, in the above argument and
putting W = (I — Q)(I — P) + P we get that W|p(x) is the identity on P(X)
and

1= Wi =QU - P)Il = IQ(Q - P)|| < Aa-

Hence W is invertible and it maps (I — P)(X) isomorphically onto (I — Q)(X).
Put U = W~1; then ||U|| < (1-Xa)~! and consider R = I-Q+QU(I—Q). Then
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R is a projection with kernel Q(X) and, if y € (I — P)(X), then Wy = (I — Q)y,
therefore

Ry=(I-Qy+QW(I-Qy=y.

It follows that R is a projection of X onto (I — P)(X) with ker R = Q(X) and
hence R = I — R. Moreover, for every z € Ball(X) let y = W—1(I — Q)z; then
y € (I — P)(X) and

(2.6) [[(R - Q)(@)|l = I = R)(z) - (I - Q){=)l
= [lRUI - @)zl = lQ( — Pyl
< Aalyll < Ae(1+ A)(1 = da) izl < a1+ Nzl

Consequently we get that
P+(I-P)WVP=R=I-R=Q-QU(I-Q)
and hence

(2.7) Q=P+ (I-PWVP+QU(I-Q).

Note that
(2.8)
@-PW(P-Q)=QUI-Q)-QUUI-P)-PU(I-Q)+PU(I-P)
=QUUI-Q)-QU(I-P)+PU(I-P)
because U = W~ maps (I — Q)(X) onto (I — P)(X). Also,
(2.9)
QU(I - P)=Q*U(I-P)=(Q - P)QU(I — P)+ PQU(I — P)
=(Q@-P)QUI - Q)+ (Q - P)QU(Q — P) + PQU(I - P).
Combining identities (2.7), (2.8) and (2.9) we get that

(2.10)
Q=P+(I-PWVP+(Q-PUP-Q)-PU(I-P)

+(@ - P)QU(I - Q) +(Q - P)QU(Q - P) + PQU(I - P).

Since SP = PS, we have that

tr(S(I — P)VP) = tr(SPU(I — P)) = tr(SPQU(I — P)) = 0.
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Now,
Q@ - PYU(P - Q)| < Ul < (1 - da)lo? < 207,
1(Q - P)QU(I - Q) < Q- PllIQUUI - Q)| < 4*A(1 + A)
by (2.6) and, finally,
1(Q - P)QU(Q - P)|| < 2a®(1 - Aa)™! < 22a%.
It follows from (2.10) that

A1 = Da?) > ||S[Ia - QI > trSQ
2 trSP — |IS|AlQ — P)U(P — Q)| + [(Q — P)QU(I — Q)
+[(Q — P)IQU(Q - P)l]
>A—a®(2+4A(1+ ) +2))
> A1 — (8 +4)\)a?,

a contradiction, in view of Definition 2.1. |

3. Almost locally minimal projections on ¢}

We start with a natural example of an almost locally minimal projection on
X =4

Example 3.1: Let P be the orthogonal projection of X onto the 3-dimensional
subspace FE, spanned by the vectors 3 = (1,1,1,1), zo2 = (1,-1,1,—-1) and
z3 = (1,-1,—-1,1). We claim that P is almost locally minimal. With respect to
the unit vector basis {u;}%_, of X, P is represented by the matrix

3 -1 1 1
_oal-1 3 1 1
P=4"1y 1 3 .1
1 1 -1 3

Clearly, ||P|| = 3/2. Consider the following vectorsin £&, = X*: g; = (1,-1,1,1),

g2 = (_la 11 1a 1)7 93 = (1a 1, 17_1) and g4 = (l)la_la 1) Then ”gt” =1 for all
4

1 < i < 4 and hence the operator S = 47! ¥ g; ®u; has nuclear norm |S}|s < 1.

i=1
Let us compute the trace of PS,

tr(PS) =471 [Z gi(Pu;)| =3/2=||P].

i=1
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It follows that || S||s = 1. We claim that PS = SP. Indeed

1 -1 1 1
R S T S R U IR
5= 1 1 | TP
1 1 -1 1

and hence PS = P(P ~ 1I) = (P — }I)P = SP. 1t follows from Theorem 2.4.
that P is almost locally minimal.

Note that in each row and each column of P the sum of the absolute values of
the entries is 3/2 = || P||. Is this typical of almost locally minimal projections on
€77 The answer is negative, as is shown in the next example.

Example 3.2: Let X = £ and let

!
[y
O O O O

Then P is a projection of X onto a 4-dimensional subspace of X, ||P|| = 3 and,
if g g1 = (g;,0) € £5, and {u;}}_, is the unit vector basis of X, then the operator
§=4"1%% | G ® u; has unclear norm ||S||x = 1, trPS = 3/2 and

SP =PS§.
Hence P is almost locally minimal by Theorem 2.4. Here the space £ splits
into an #;-direct sum of ¢{ and a (one dimensional) subspace [us}, and the range
of P is isometric to the space rangeP @ [us]. Moreover, the £o, norm ||P||e =
[|P]]y = 3/2. It turns out that a similar property is shared by every almost locally

minimal projection on £7. Before we state the main result of this section let us
discuss the following special projections on L;[0, 1].

Definition 3.3: A projection P on L1[0 1] is called M- doubly stochastic if it
is represented by a kernel p(z,y) (i.e (Pf Nz fo (y)dy) satisfying the
following equalities:

1
/ Ip(z,y)|dy = A ae
]

and

1
[ pialde = x a
0
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A projection P on £} is said to be equivalent to a A-doubly stochastic
projection P on L;[0, 1] if there is an isometric embedding J: £f — L;[0,1] and
n pairwise disjoint measurable sets Ay,..., 4, with u(A;)} > 0 (1 = Lebesgue’s
measure) such that, for each unit vector basis element u;, 1 < i < n, of €},
Ju; = u(A;) x4, and P = JPJ'R, where R denotes the natural projection
of L1[0,1] onto J(£7) defined by

Rf = Zu(Ai)_l(/f(y)dy)XAw
i=1 A,

Clearly, P(£}) is isometric to P(Ly).

LEMMA 3.4: Let Q be a projection on ¢7* and assume that () is represented by
the matrix (¢; ;)7%—, with respect to the unit vector basis {u;};~,. Assume that
Sy lgijl = X for 1 < § < m and that there exist positive number {\;}72, with
S, A =1 such that

(3.1) At Z [gijiAj=A foralll<i<m.
j=1
Then Q is equivalent to a A-doubly stochastic projection Q on L,[0,1].

Proof: Let A; denote the interval (Z’ ! /\],zj -1 ) of [0,1] and embed ¢
into L1[0, 1] by the map J : £f* — L1[0,1], defined by Ju; = X ‘x4, where x4,
is the indicator function of A;. Clearly, J is an isometric embedding and there
is a natural projection R of norm 1 of L;[0,1] onto J(¢7*) defined by

Rf = Z(/ )J(u,

Put Q = JQJLR; then Q is a projection of L;[0,1] onto JQ(£*) and 1Qll: =
lQll1 = A. Note that

1 m
Qf(x) = / a(z,y)f(y)dy where q(z,y) = ) (qux,a (y)) (Jus)(z)-
0

i=1 \j=1

To show that Q is A-doubly stochastic, let us compute the relevant integrals: If
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z € Ay then, because the A; are pairwise disjoint,
1

/IQ(x,yNdy:u(Ak)—l/l
0

0

> akixa, v)|dy

Jj=1

by (3.1). Also, if y € Ay then
/1
0

This proves that Q is A-doubly stochastic. |

m

> aikd (wi)(z)

=1

dz =) lgixl =\
=1

One important property of a A-doubly stochastic projection P on Ly is the
following fact:

(3.2) Regarding P as a projection on Loo[0,1], [|Plleo = A.
Proof: Let ||fllcc = 1; then, for every 0 < 2z <1,
1

/ p(z,y) f(y)dy)

0

1

< / Ip(z, )ldy = A.

o]

(Pf)(z)| =

The equality || Pllcc = A holds because, for almost every z, if f(y) = sign(p(z,y))
then [(Pf)(z)] = A [ |

Remark 3.5: We are interested in the isomorphic nature of the range E of a
projection P on £}. We have just seen that if (3.1) holds then E is isometric to
the range of a A-doubly stochastic projection Pon L.

In general it may not true that the range E of a projection @ satisfying the
assumptions of Lemma 3.4 is isometric to the range of a projection P on some £
which is represented (with respect to the unit vector basis {v;}i~;) by a A-doubly
stochastic matrix (g; ;) satisfying Y. 1 1gi,;| = Dy |5l = A forall 1 < j < n.
However, if ); are all rational numbers then the last statement holds. Indeed, let
Ai = ki/m and let T €} — £7* be the isometry defined by

t;
T(w) =k Y vw,
j=ti—1+1
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where tg = 0 and, for ¢ > 1, ; = Z; 1 k5. Let V denote the natural projection

of £7 onto [w;], defined by V(vg) = w; if t;-1 < k < ¢;. Then ||V]| =1 and
P = TQT™1V is the desired projection of £* onto T{E). Indeed, if t;,_; < k < t5
then

Py = TQT *wy, = TQuy,
L

n n
=T qu',hu;j =qu,jkj_l Z v;.
j=1 j=1

i=tj._1+1

Therefore, if P = (p;;)7%_; then p;x = qj’hk}-l = m“lqj,h)\j_l iftp 1 <k<ty
and t;_; < ¢ <t;. It follows that

m n
Solpikl =m™ Y lgialkiA;t =
i=1 j=1

for every 1 < k <m and

S lpikl =m Y laalkad;t =271 lgialde = A
k=1 h=1 h=1

by (3.1).

We are now ready to prove the following representation theorem for almost
locally minimal projections on £7.
THEOREM 3.6: Let P be an almost locally minimal projection on X = {7 with

IPll=A>1. Then there is an integer 2 < m < n, there are positive numbers

{A:}2, with E Ai = 1 and a permutation {u;}?, of the unit vector basis of {7

18 7]

with respect to whzch

0 B

where Q% = Q, P} = Py, Q is an m x m matrix satisfying (3.1) and, therefore,
equivalent to a A-doubly stochastic projection, Py is an (n—m) X (n —m) matrix,
QI = A, [[Poll < A and

Qi) Bey Po[uliemsr), P(ET)) < A

Proof: By Theorem 2.4, there is an operator S on X such that ||S|lx = 1,
trSP = |P|| = X and SP = PS. Because X = {7 there is a permutation
{u;}?_; of the unit vector basis of X with respect to which § = 37", Xigi ® u;
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where 1 <m < n, A >0, Y0\ =1, g = 35 gijui € €% and |lgi|| =
max; |g;,;| = 1 for all 1 < ¢ <m. ({u}}}_; denotes the unit vector basis of £3,.)
Let P = (p; ;)7 ;=1 be the matrix of P w1th respect to {u;};; then

(3.2) PS= Z Xigi ® Pu; = Z Aigi @ ZI’],:UJ Z (Z /\ipj,igi) ® uj.

i=1 7=1

It follows that

(33)
PS) Z Z /\zpmgm = Z Az pr 95 ) < Z As Z };Dj,il <A
j=1i=1 =1 7j=1

because A = || P|| = max; 37, [pj;i| and ||g;|| = max; |g; ;| = 1.
Hence, for every 1 <i < m, if p;; # 0 then

(3.4) gi,; = sign(p;;) and Z Ipj.i| =

On the other hand,

(3.5) PS=SP=> )\P"g Qu,.
7j=1

Comparing (3.2) and (3.5) we get that, for 1 < j < m,

(3.6) > Aipiig = A Pg;.

i=1

Applying both sides of (3.6) to u; we obtain by (3.4) that
m m m
(3.7) Do Nilpisl =D Apiigis = Y Aipjigi(u;)
i=1 =1 i=1
= AjP*g;(u;) = Aj9;(Puj) = Ajg; (Epk J“k)

n n
=X ) Priik = A ) Ikl
k=1 k=1

Summing both sides of (3.7) over 1 < j < m we get, by (3.4), that

(3.8) ZA Z‘i”w‘ ]Zl’\ (lek’]l) i::

II

=1 j=1
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The equality (3.8) forces Z;nzl |pjil = A for all 1 <4 < m, hence
(3.9) pi=0 forall 1<i<m and m<j<n.

The relation P? = P and the last equality imply that, for m < h,k < n,

n k13
Phk = th,jpj,k = Z Ph,jPj k>
=1 j=m+1
hence the (n—m)x (n—m) matrix Py = (ph,k)} y=m+1 15 @ projection with || Fo|| <
lPll = A. Similarly, if we put g;; = p;; for 1 < 4,5 < m then Q = (gi,j)7 =1
is easily checked to be a projection satisfying the equality > .-, |gi,;| = A. Also,
by (3.6), >-7_; Ajlaigl = Mig;(Puj) = A\ Tt follows from Lemma 3.4 that Q
is equivalent to a A-doubly stochastic projection on L1[0,1]. Let us now discuss
the isomorphic type of Q([u:]%,) ®e, Po([ui)iermit1)-

Let P denote the projection Q & P on £} (ie. Pu; = Qu; if 1 <i < m and
Pu; = Pyu; if m < i <n). Since P — P is an upper right m x (n — m) matrix,
we have that (P — P)2 = 0. The following lemma is needed for the completion
of the proof of Theorem 3.6.

LEMMA 3.7: Let P and P be projections on a Banach space X and assume that
IPIl, 12|l < A and (P — P)? = 0. Then d(P(X), P(X)) < AZ.

Proof: Since P+P = PP+ 15P, multiplying both sides by P on the left we get
that P+ PP = PP 4+ PPP, hence P = PPP. It follows that if 2 = Pz then
z = PPz and, therefore,

Iz < IPII =l < AllPa]| < A lell.

By symmetry we get that for every y = Py, ||yl < APyl < A|ly|l. It follows
that d(P(X), P(X)) < A2. .

It remains to discuss the magnitude of m. Suppose that m = 1; then, w.l.o.g.,
S = Ag1 ®uy and s0 A\ P*gy ® u3 = SP = PS = A1g1 ® Pu;. It follows that
u; = Puy, contradicting the fact that ||Pui|| = A > 1. This completes the proof
of Theorem 3.6. |

4. Concluding remarks

How far are we from a positive solution of Problem 1.1 raised in the Introduction
and what is needed for a complete solution?

It seems that we still have a long way ahead; however, Theorem 3.6 suggests
that, under certain circumstances, an inductive argument might work well. We
need positive answers to the following
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PROBLEM 4.1: Let P be a A-doubly stochastic projection on L;1[0,1] with
rank(P) = k. Is d(P(Ly),£F) < 9(\) where 4 is independent on k?

PROBLEM 4.2: Do there exist constants 0 < = (A} < 1 and 0 < & = a(N)
such that if P is a projection on £ with ||P}| < A which is almost a-minimal

then there is an almost locally minimal projection P on £} with ||P — P|| < 8
and || Pl < ||P||?

Note that Theorem 1.2 settles Problem 4.2 in the special case of projections of
small norm, since any projection of norm 1 is locally minimal.

Suppose that Problems 4.1 and 4.2 have positive solutions. Starting with a
projection ) of norm A, either we can find a sequence {Q;}Y, with Qq = Q and
l@nIl = 1 such that [|Q: — Qi1 < @ and |Qiy1fl < A(1 — Da?)**! for every
0 <7< N -1, or there is a J; = P such that P is almost a-minimal. In the
first case, Problem 1.1 is solved because the discussion in the Introduction shows
that d(Q(€7),£5) < (1 — a)™N(1 + ). Since A\(1 — Do?)N = 1 we get that

d(Q(E), 6F) = [(1+ @) /(1 — )]st =P los 2™,

In the second case, if Problem 4.2 has a positive solution, there is an almost
locally minimal projection P on £} with ||P — Q|| < 8. If Problem 4.1 has a
positive solution, then Theorem 3.6 ensures that P¢} splits into a precise £;-
direct sum of a k; dimensional subspace F' of £* with d(F,£%) < ()) and a
range E of a projection Qp of rank < k with ||Qo]| < A. With some luck an

induction procedure may then settle Problem 1.1 but, of course, additional work
1s required.

The case of orthogonal projections: Suppose that P is an almost locally minimal
orthogonal projection on 7, i.e., the representing matrix (p; ;)7;~; is symmetric.
In this case Theorem 3.6 states that the space £} splits into a precise £;-direct
sum {7 @477 and P = Q @ Py, where Q and P, are orthogonal projections
on £7 and £77™ resp. with ||@]], | Po]l < ||P|| and where Q is an almost locally
minimal projection on £* which is equivalent to a A-doubly stochastic projection.
It will be interesting to settle the following:

PROBLEM 4.3: What is the isomorphic type of the range P(£7) of an orthogonal
A-doubly stochastic projection on 77
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